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HERA   -    F2 is dominated by the gluon density at low x
     
    ➤    the same gluon density determines the exclusive and 
               inclusive diffractive processes, 
               γp ⇒ J/ψ p, γp ⇒ φp, γp⇒ ρp,    γp⇒ Xp,

     ➤   universal gluon density ≡ Pomeron ?
                       
  

               

clear hints for saturation, but here we concentrate on the gluon gluon 
interactions above the saturation region

              

 F2   VM, Diffraction  



The dynamics of Gluon Density at low x is determined by the 
amplitude for the scattering of a gluon on a gluon, described by 
the BFKL equation

which can be solved in terms of the 
eigenfunctions of the kernel 

∫
dk′ 2K(k,k′)fω(k′) = ωfω(k)

∂

∂ ln s
A(s,k,k′) = δ(k2 − k′ 2) +

∫
dq2K(k,q)A(s,q,k′)

in LO, with 
fixed αs            

fω(k) =
(
k2

)iν−1/2 ;
ω = αsχ0(ν)

prevailing intuition (based on DGLAP) - 
gluon are a gas of particles
BFKL leads to a richer structure   -  
basic feature: oscillations



Quasi-locality 
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Similarity to the Schroedinger equation  

Properties of the BFKL Kernel

Characteristic function 



BFKL amplitude  

χ(ν) = 4 ln(2)− 7ζ(3)ν2 + ...

ᾱs = CA
αs

π

Diffusion approximation  

A(s,k1,k2) ∼
∫

dν

[
k2
1

k2
2

]iν

sᾱsχ(ν)



BFKL eq., with fixed αs, predicts F2 ~ (1/x)ω  with ω ~ constant with 
Q2,    ω  ~ 0.5 in LO and ω ~ 0.3 in NLO
Therefore, the prevailing opinion was that the BFKL analysis is not 
applicable to HERA data.

First hints that 
in BFKL λ can 
be substantially 
varying with Q2   
was given in PL 
668 (2008) 51 
by EKR

The rate of rise λ 
F2 ~ (1/x)λ

Lipatov 86 & EKR 2008: BFKL solutions with the running αs are 
substantially different from solutions with the fixed αs.



in NLO, with running αs, BFKL frequency ν  becomes k-dependent, ν(k)

ν has to become a function of k because ω  cannot depend on k
GS resummation applied
evaluation in diffusion (ν ≈ 0) or semiclassical approximation (ν > 0)

For sufficiently large k,  there is no longer a real solution for ν. 
The transition from real to imaginary ν(k) singles out a special value of    

                      k =kcrit, with ν(kcrit)=0.  
The solutions below and above this critical momentum kcrit have to 
match. This fixes the phase of ef’s.

αs(k2)χ0(ν(k)) + α2
s(k

2)χ1(ν(k)) = ω



Near k=kcrit, the BFKL eq. becomes the Airy eq. which is solved 
by the Airy eigenfunctions 

with

for k<<kcrit the Airy function has the asymptotic behaviour 

The two fixed phases at k=kcrit and at k=k0 (near ΛQCD) 
lead to the quantization condition
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The first 
eight 

eigenfunctions
determined at  

η=0

⇓ kcrit

⇓ kcrit



Comparison with HERA data
Discreet Pomeron Green function

Integrate with the photon and 
proton impact factors
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Proton impact factor

The fit is not sensitive to the particular form of the impact factor. 
The support of the proton impact factor is much smaller than the 
oscillation period of fn  and because the frequencies ν have a limited 

range

➤  many eigenfunctions have to contribute and
 η has to be a function of n

Φp(k) = A k2e−bk2

η = η0

(
n− 1

nmax − 1

)κ



The frequencies ν(k)

Music analogy: 
eigenfunctions are tones with modulated 

frequencies



The qualities of fits for various numbers of 
eigenfunctions 

➤ new data are crucial for finding the right solution 
 the differences in the fit qualities would be negligible if the 

errors where more than 2-times larger 



The final fit 
performed 

with 120 ef’s 
and 30 

overlaps and 
5 flavours



The rate of rise λ 
F2 ~ (1/x)λ

The first successful pure BFKL description of the λ plot.

 For many years it was claimed that BFKL analysis was not applicable to 
HERA data because of the observed substantial variation of λ with Q2

Q2 (GeV2)



Eigenvalues ω

ωn ≈
0.5

1 + 0.95 n



Pomeron - Graviton Correspondence
String theory emerged out of phenomenology of 
hadron-hadron scattering -
Dolan-Horn-Schmid duality

▶ Veneziano amplitude 

 α(t) = α0 + α’t

▶ generalization to dual resonance models,
Veneziano amplitude for the pomeron trajectory
has a pole for s=t=0 with J=2 

▶ starting point for a theory of quantum gravity 

 Maldacena Conjecture: (N=4 SUSY YM QCD) = (CFT in ADS5×S5)  



u = ln(z0/z)

Pomeron in ADS, Brower, Polchinski, Strassler, Tan,  2006   

u = ln(k/k0)u=ln(z0/z) in ADS corresponds to ln(k/k0) in BFKL



in ADS5 and
in N=4 Super YM  

j0 = 2− 2
π
√

ᾱs

j0 = 2− 2
π
√

ᾱs



Pomeron Regge trajectories 
in ADS  

hard wall glueballsrunning coupling



arXiv: 1007.2259v2, Sept 2010 

reflected term direct term 

fitted variables, 
g0, ρ, z0, Q’

reflected term
(model dependent) 
corresponds to 

the phase 
condition in KLRW

in KLRW, ρ is predicted





Summary and Outlook

Since the beginning of particle physics, high energy behavior of scattering 
amplitudes was expected to give basic insight into the nature of strong 
forces. (at HE, time dilatation slows down the dynamics of physical 
processes)   

Two different basic approaches: the Discrete-BFKL-Pomeron  and ADS-
closed-string-Pomeron are describing HERA F2 data very well. 

Will striking similarities between the two approaches give insight into the 
connection between QCD and Gravitation?  Into the confinement problem?

Precise measurement at future ep and eA could provide crucial data: 
1) exclusive diffractive processes ⇒ measurements of α(t)  - EIC 

2) F2 and exclusive diffraction at highest possible energies - LHeC
    
 



Back up slides  
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evaluate triple pomeron vertex with DPS, at t ≠ 0, apply it in the 
saturation region, i.e at low Q2 , and to elastic pp scattering 

High energy behaviour of pp, πp, Kp and γp shows universal 
properties  ☞ get insight into confinement?    

Transition to the saturation and confinement regions   

precision data 
at low Q2 required     like in pp, πp, Kp scattering     





why so many eigenfunctions ?

because the contribution of large n ef’s is only weakly
suppressed

enhancement by (1/x)ω is not very large because 
 ω1 ≈ 0.25,  ω5  ≈ 0.1,   ω10 ≈ 0.05    

suppression of large n contribution only by the 
normalization condition  ~ 1/√n 
 



The first 
eight 

eigenfunctions
determined at  

η=0

⇓ kcrit

⇓ kcrit

Supersym. threshold

Are BSM  
effects

increasing ν ?
and 

decreasing
 kcrit ? 

less ef’s 
necessary ? 
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Quasi-locality of the kernel 

and of the Green function

Green function integrated with ΦP(k’)

no large k gluons


